Aspergillus niger Prolyl Endoprotease for Hydrogen–Deuterium Exchange Mass Spectrometry and Protein Structural Studies

نویسندگان

  • Liana Tsiatsiani
  • Michiel Akeroyd
  • Maurien Olsthoorn
  • Albert J R Heck
چکیده

To monitor the structural integrity of therapeutic proteins, hydrogen-deuterium exchange mass spectrometry (HDX-MS) is increasingly utilized in the pharmaceutical industry. The successful outcome of HDX-MS analyses depends on the sample preparation conditions, which involve the rapid digestion of proteins at 0 °C and pH 2.5. Very few proteases are able to withstand such harsh conditions, with pepsin being the best-known exception, even though its activity is also strongly reduced at 0 °C. Here, we evaluate the usage of a prolyl endopeptidase from Aspergillus niger (An-PEP) for HDX-MS. What makes this protease very attractive is that it cleaves preferentially the hardest to digest amino acid, proline. To our surprise, and in contrast to previous reports, An-PEP activity was found optimal around pH 2.5 and could be further enhanced by urea up to 40%. Under typical HDX-MS conditions and using small amounts of enzyme, An-PEP generated an equivalent number of peptides as pepsin, as exemplified by using the two model systems tetrameric human hemoglobin (Hb) and human IgG4. Interestingly, because An-PEP peptides are shorter than pepsin-generated peptides, higher sequence resolution could be achieved, especially for Pro-containing protein regions in the alpha subunit of Hb, revealing new protected Hb regions that were not observed with pepsin. Due to its Pro-preference and resistance to low pH, we conclude that An-PEP is an archetype enzyme for HDX-MS, highly complementary to pepsin, and especially promising for structural studies on Pro-rich proteins or proteins containing Pro-rich binding domains involved in cellular signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease.

Celiac disease is a T cell-driven intolerance to wheat gluten. The gluten-derived T cell epitopes are proline-rich and thereby highly resistant to proteolytic degradation within the gastrointestinal tract. Oral supplementation with prolyl oligopeptidases has therefore been proposed as a potential therapeutic approach. The enzymes studied, however, have limitations as they are irreversibly inact...

متن کامل

Protein analysis by hydrogen exchange mass spectrometry.

Mass spectrometry has provided a powerful method for monitoring hydrogen exchange of protein backbone amides with deuterium from solvent. In comparison to popular NMR approaches, mass spectrometry has the advantages of higher sensitivity, wider coverage of sequence, and the ability to analyze larger proteins. Proteolytic fragmentation of proteins following the exchange reaction provides moderat...

متن کامل

Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry.

The rates at which hydrogens located at peptide amide linkages in proteins undergo isotopic exchange when a protein is exposed to D2O depend on whether these amide hydrogens are hydrogen bonded and whether they are accessible to the aqueous solvent. Hence, amide hydrogen exchange rates are a sensitive probe for detecting changes in protein conformation and dynamics. Hydrogen exchange rates in p...

متن کامل

On-tissue Direct Monitoring of Global Hydrogen/Deuterium Exchange by MALDI Mass Spectrometry: Tissue Deuterium Exchange Mass Spectrometry (TDXMS).

Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a differ...

متن کامل

Structural Analysis of Diheme Cytochrome c by Hydrogen–Deuterium Exchange Mass Spectrometry and Homology Modeling

A lack of X-ray or nuclear magnetic resonance structures of proteins inhibits their further study and characterization, motivating the development of new ways of analyzing structural information without crystal structures. The combination of hydrogen-deuterium exchange mass spectrometry (HDX-MS) data in conjunction with homology modeling can provide improved structure and mechanistic prediction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2017